Vasa recta pericytes express a strong inward rectifier K+ conductance.
نویسندگان
چکیده
Strong inward rectifier potassium channels are expressed by some vascular smooth muscle cells and facilitate K+-induced hyperpolarization. Using whole cell patch clamp of isolated descending vasa recta (DVR), we tested whether strong inward rectifier K+ currents are present in smooth muscle and pericytes. Increasing extracellular K+ from 5 to 50 and 140 mmol/l induced inward rectifying currents. Those currents were Ba2+ sensitive and reversed at the K+ equilibrium potential imposed by the electrode and extracellular buffers. Ba2+ binding constants in symmetrical K+ varied between 0.24 and 24 micromol/l at -150 and -20 mV, respectively. Ba2+ blockade was time and voltage dependent. Extracellular Cs+ also blocked the inward currents with binding constants between 268 and 4,938 micromol/l at -150 and -50 mV, respectively. Ba2+ (30 micromol/l) and ouabain (1 mmol/l) depolarized pericytes by an average of 11 and 24 mV, respectively. Elevation of extracellular K+ from 5 to 10 mmol/l hyperpolarized pericytes by 6 mV. That hyperpolarization was reversed by Ba2+ (30 micromol/l). We conclude that strong inward rectifier K+ channels and Na+-K+-ATPase contribute to resting potential and that KIR channels can mediate K+-induced hyperpolarization of DVR pericytes.
منابع مشابه
KATP channel conductance of descending vasa recta pericytes.
Using nystatin-perforated patch-clamp and whole cell recording, we tested the hypothesis that K(ATP) channels contribute to resting conductance of rat descending vasa recta (DVR) pericytes and are modulated by vasoconstrictors. The K(ATP) blocker glybenclamide (Glb; 10 microM) depolarized pericytes and inhibited outward currents of cells held at -40 mV. K(ATP) openers pinacidil (Pnc; 10 microM)...
متن کاملDescending vasa recta endothelia express inward rectifier potassium channels.
Descending vasa recta (DVR) are capillary-sized microvessels that supply blood flow to the renal medulla. They are composed of contractile pericytes and endothelial cells. In this study, we used the whole cell patch-clamp method to determine whether inward rectifier potassium channels (K(IR)) exist in the endothelia, affect membrane potential, and modulate intracellular Ca(2+) concentration ([C...
متن کاملControl of descending vasa recta pericyte membrane potential by angiotensin II.
Using nystatin perforated-patch whole cell recording, we investigated the role of Cl(-) conductance in the modulation of outer medullary descending vasa recta (OMDVR) pericyte membrane potential (Psi m) by ANG II. ANG II (10(-11) to 10(-7) M) consistently depolarized OMDVR and induced Psi m oscillations at lower concentrations. The Cl(-) channel blockers anthracene-9-decarboxylate (1 mM) and ni...
متن کاملInhibition of K+ conductance in descending vasa recta pericytes by ANG II.
We tested whether K(+) channel inhibition accompanies ANG II-induced depolarization of descending vasa recta (DVR) pericytes. An increase in extracellular K(+) concentration ([K(+)](o)) from 5 to 100 mM depolarized resting pericytes but had no effect after prolonged (10 nM, 20 min) ANG II exposure. In contrast, reduction of extracellular Cl(-) concentration ([Cl(-)](o)) from 154 to 34 mM had a ...
متن کاملAn Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ
BACKGROUND Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. METHODS Confo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 290 6 شماره
صفحات -
تاریخ انتشار 2006